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Analytical characterization of adhering vesicles
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We characterize vesicle adhesion onto homogeneous substrates by means of a perturbative expansion around
the infinite adhesion limit, where curvature elasticity effects are absent. At first order in curvature elasticity, we
determine analytically various global physical quantities associated with adhering vesicles: height, adhesion
radius, etc. Our results are valid for adhesion energies above a certain threshold, that we determine numerically.
We discuss the haptotactic force acting on a vesicle in the limit of weak adhesion gradients. We also propose
a few methods for measuring adhesion energies and we suggest a possible way of determining the size of
suboptical vesicles using controlled adhesion gradients.
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I. INTRODUCTION

When phospholipids are dissolved in an aqueous solut
almost all the molecules condensate into bilayers. Lipid
layers are formed by two contacting monolayers of oppo
orientation, in which the hydrophilic heads of the molecu
are located at the sides of the structure, the hydrophobic
being shielded from contact with water@1#. As there is a
prohibitive energy cost associated with their free borde
these bilayers form closed objects, which are called vesic
For some biological studies, vesicles are used as mode
the membrane of living cells@2#. They also have application
as encapsulation vectors for drug delivery@3#. Their effi-
ciency as drug delivery vectors is linked to their permea
ity, which can be affected by adhesion phenomena@4#.
Vesicle adhesion on a solid substrate, followed by its rupt
and fusion, also provides a simple technique for obtain
supported membranes@5# that can be used for the design
biosensors@6#.

Adhesion phenomena between a lipid bilayer and a s
strate can be divided into two categories:~i! Specific adhe-
sion between a particular host protein and a receptor on
substrate@7#; this kind of adhesion generally implies a pr
cess of molecular recognition between a receptor an
ligand, and is common in biological systems.~ii ! Nonspecific
adhesion between the membrane’s lipids and the subst
mediated by universal interactions, e.g., van der Wa
forces. Here, we focus on nonspecific adhesion, which ca
described by an adhesion potentialW that represents the fre
energy gain per unit area of contact. Typical values ofW
range from 1024 mJ/m2 to 1 mJ/m2 @8#. Note that the de-
scription of adhesion using a contact potential is appro
mate, because van der Waals forces are actually long ra
and because membranes may fluctuate in the vicinity of
substrate: adhering vesicles actually never strictly come
contact with their substrate. Membrane–substrate separa
range from 1 nm for the strongest values ofW @6#, to about
50 nm for the weakest adhesions@9#. The highest values o
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W tend to produce vesicle rupture during the adhesion p
cess@5#, owing to a strong tension induced in the membra
@8#.

To determine the shape and free energy of an adhe
vesicle, one must take into account the competition betwe
~i! the adhesion energy gain,~ii ! the constraints on the tota
membrane areaA and the total enclosed volumeV, and~iii !
the free energy cost associated with the curvature elast
of the membrane. The latter is described by a free ene
density proportional to the square of the local mean cur
ture @10#. For lipids, the corresponding bending rigidityk is
of the order of 10219 J.25kBT at room temperature@11#.
Refined vesicle models take into account a constraint on
difference between the areas of the two monolayers@12#, or
an elasticity associated with it@13#. Physically, this arises
from the fact that lipids are not significantly exchanged b
tween the two monolayers during typical experimental tim
It is not known at the present time whether this constrain
significant for adhering vesicles: to simplify, we shall disr
gard it in our approach.

The shapes of axisymmetric adhering vesicles can be
termined by functional minimization@8,14#. However, due to
nonlinearities in the equilibrium equations, exact solutio
can only be determined numerically. In the asymptotic c
of infinitely strong adhesion,W→` ~or equivalently k
→0), the problem is easily solved analytically@14#: the
equilibrium shapes are spherical caps, whose features
dictated by the geometrical constraints only. In this paper
characterize the adhesion of vesicles in the case of strong
finite adhesion, by extracting analytical corrections with
spect to the infinite adhesion case. We determine analytic
the first-order corrections to various physical observab
and we discuss their limit of validity by a direct compariso
with exact numerical results.

The first-order corrections with respect to the infinite a
hesion limit originate from the existence of a strongly curv
region at the border of the adhesion disk~see Fig. 1! @15#.
We shall refer to this region as the ‘‘contact-angle region
©2002 The American Physical Society12-1
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C. TORDEUX, J.-B. FOURNIER, AND P. GALATOLA PHYSICAL REVIEW E65 041912
by analogy with wetting phenomena@16#. The shape of this
region has been determined in Refs.@17,18# using an open
membrane description, i.e., no volume constraint and an
ternally imposed tension acting along a fixed direction mi
icking the asymptotic contact angle. Imposing explicitly t
volume constraint, we recover the same shape for
contact-angle region. Our approach allows us to analytic
describe various observables associated with the adhe
vesicle~height, radius of adhesion, etc.!.

Standard measurements of adhesion potentialsW are
based on the determination of the shape of the contact-a
region, e.g., by reflection interference contact microsco
~RICM!. Indeed, the radial curvaturec of a detaching mem-
brane yieldsW through the equilibrium relationc5A2W/k
@14,19,20#. In practice, it is difficult to precisely measurec,
and it is more efficient to fit the contact-angle region us
RICM @18,21#. Available models rest, however, on linearize
equations for contact angles close top @18#. Our nonlinear
analysis allows not only to fit the contact-angle region a
determine contact potentials even for contact angles far f
p, but also provides means of determiningW by measuring
the various global observables.

Our paper is organized as follows: In Sec. II, we introdu
the model used to describe the elasticity of vesicles and t
adhesion onto homogeneous substrates. We also define
ous global observables relevant to the adhesion geom
Section III contains the results of our analytical calculatio
in Sec. III A, we recall the asymptotic limit of infinite adhe
sion; in Sec. III B, we recall the general equations describ
the equilibrium shapes of adhering axisymmetric vesicles
Sec. III C 1 we calculate the shape of the contact-angle
gion at first order inAk/(WA); in Sec. III C 2, we determine
the contact-angle extrapolation length@18,21#; in Sec.
III C 3, we determine the first-order expansions, in pow
series ofAk/(WA), of the various global observables ass
ciated with the vesicle’s shape; in Sec. III C 4, we calcul

FIG. 1. Definition of the global observables associated with
axisymmetric adhering vesicle. The vesicle’s shape, which was
culated numerically, corresponds to a rather deflated situatio
which the ‘‘contact-angle region’’ is broad and not well define
When adhesion is stronger, the vesicle’s shape resembles a sph
cap ~dashed line!, with a strongly curved rim at the foot of th
‘‘contact angle’’~no discontinuity of the membrane’s normal!.
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at first order the free energy of adhering vesicles and
discuss haptotaxis~motion induced by an adhesion gradien!
@22#. In Sec. IV, we determinenumericallythe global observ-
ables and we discuss the range of validity of the correspo
ing first-order expansions. Finally, in Sec. V, we summar
our results and we discuss some possible applications
cluding methods for measuringW.

II. DESCRIPTION OF ADHERING VESICLES

In most experimental situations, although vesicles
slightly permeable to water, their volumeV is strongly fixed
by the osmotic pressure of the various solubilized ions
which the membrane is impermeable@8#. We shall suppose
that this volume constraint remains satisfied for adher
vesicles. The areaA of vesicles is also fixed to a high accu
racy: solubilized lipids are almost inexistent and the ar
stretching modulus ks , which is of the order of
100 mJ/m2@W, cannot significantly affect the area con
straint @8#. It is traditional to introduce a dimensionless p
rameterv, the reduced volume, defined by

v5
V

4

3
p~A/4p!3/2

. ~1!

This quantity 0,v<1 describes how much the vesicle
deflated with respect to a sphere (v51). Due to the con-
straints, it is fixed.

V and A being fixed, the free energy of an adherin
vesicle is given by

F52WAadh1 R dA
1

2
k~c11c2!2, ~2!

wherec1 andc2 are the two local principal curvatures of th
membrane,k is the Helfrich bending constant@10#, Aadh is
the area of contact between the vesicle and the substrate
W is the contact potential. As discussed in the Introducti
we simply model the adhesion by an energy proportiona
the contact area. In principle,F should also contain a Gauss
ian curvature termk̄c1c2, however, we discard it since it
integral over the membrane is constant for a given ves
topology, according to the Gauss-Bonnet theorem@23#.
Therefore, there are only two dimensionless parameter
the problem:v andk/(WA).

In the entire paper we shall restrict ourselves to axisy
metric vesicle shapes. We define the following global obse
ables~see Fig. 1!: we call H the height of the vesicle mea
sured on the revolution axis, andL the radius of the adhesio
disk. The adhering area is thusAadh5pL2. In the regime of
strong adhesion, vesicles almost take the shape of a sphe
cap. In order to precisely define a ‘‘contact angle’’ even
the case of weaker adhesion, we introduce the sphere th
osculatory to the membrane at the point intersecting
revolution axis. We callR its radius andu the angle at which
it intersects the substrate~see Fig. 1!. Finally, we define the
extrapolation lengthl1 as the distance between the poi
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ANALYTICAL CHARACTERIZATION OF ADHERING VESICLES PHYSICAL REVIEW E65 041912
where the vesicle detaches from the substrate and the i
section between the osculatory sphere and the substrate

We shall denote throughout by the index zero all t
quantities referring to the limitW→`, where the vesicle
exactly takes the shape of a spherical cap. There
H0 , R0 , u0, and L0 are the height, radius, contact ang
and adhesion radius of the corresponding spherical cap.

III. ANALYTICAL RESULTS

Strong adhesion corresponds to the situation where
adhesion energy gain is very large compared to the ela
energy of the vesicle. Since the energy of freely float
vesicles is of orderk @8#, even for deflated vesicles, th
condition can be expressed as

WA@k. ~3!

It corresponds, for a given vesicle, to strong enough con
potentialsW, or, for a givenW, to large enough vesicles. I
this situation, elasticity can be treated as a first-order cor
tion with respect to the asymptotic limit of infinite adhesio
We shall, therefore, first review the limitW→` @14#.

A. Infinite contact potential W

In this case, adhesion is the only relevant contribution
the free energy of the system, andv is the only dimension-
less parameter of the problem. Taking into account the
geometrical constraints, and formally settingk50, the shape
of the adhering vesicle is deduced from the minimization
the following functional:

F0* 52WAadh
0 1S0A1P0V. ~4!

S0 is the Lagrange multiplier associated with the area c
straint andP0 is the Lagrange multiplier associated with th
volume constraint. Equation~4! can be rewritten as

F0* 5~S02W!Aadh
0 1S0~A2Aadh

0 !1P0V. ~5!

This functional is identical to that of a liquid droplet wettin
a flat substrate, with the correspondenceS02W→gSL
2gSV, S0→gLV andP0→2DP, in whichgSL , gSV, gLV
have their usual meaning andDP is the drop’s excess pres
sure @16#. This implies that infinitely strongly adherin
vesicles and liquid droplets have the same ensemble of e
librium shapes, although they are described by different
of physical parameters. Consequently, the equilibrium sha
in the asymptotic limitW→` are spherical caps.

The major physical difference with the case of liqu
droplets is that the contact angles are not fixed by surf
tensions, but rather by the geometrical constraints acting
the vesicles. The relation between the contact angleu0 and
the reduced volumev @Eq. ~1!# can easily be deduced from
simple geometry@8#

v5
829 cosu01cos 3u0

2~222 cosu01sin2 u0!3/2
. ~6!
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As for the two Lagrange multipliers, they can easily be fou
by using the analogy with wetting droplets: the Young re
tion gLV cosu1gSL5gSV yields

S05
W

11cosu0
, ~7!

and the Laplace lawDP52gLV /R0 yields

P052
2S0

R0
52

2W sinu0

L0~11cosu0!
. ~8!

B. The equations describing finite adhesion

Let us now consider the case of a finite contact poten
W. The equilibrium shapes are those minimizing the sum
the bending free energy and the adhesion free energy, su
to the area and volume constraints. Considering axisymm
ric shapes, we parameterize their contour by the tang
anglec(s), wheresP@0,s1# is the arc length~see Fig. 2!,
such that ats50 the membrane leaves the substrate and
s5s1 it attains the revolution axis. Althoughc(s) alone is
sufficient to describe the vesicle’s shape, it is more con
nient to also introduce the distancer (s) to the revolution
axis @24#. In the following, we shall denote by a dot deriva
tion with respect tos. The two principal curvatures arec1

5ċ ~in the plane of Fig. 2! andc25(sinc)/r ~perpendicular
to the plane of Fig. 2!. Enforcing the constraints by Lagrang
multipliers, the equilibrium shapes can be obtained by m
mizing the following functional@24#:

F* @r ~s!,c~s!,s1#5pr ~0!2~S2W!1E
0

s1L~r , ṙ ,c,ċ,g!ds,

~9a!

where

L52pr F1

2
kS ċ1

sinc

r D 2

1S1
P

2
r sincG

12pg~s!~ ṙ 2cosc!. ~9b!

Herec(s) and r (s) are regular functions satisfying

c~0!50, c~s1!5p, and r ~s1!50, ~10!

FIG. 2. Definition of the parameters used in the determination
the equilibrium shape of an adhering vesicle.
2-3
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C. TORDEUX, J.-B. FOURNIER, AND P. GALATOLA PHYSICAL REVIEW E65 041912
while r (0)[L ands1 are arbitrary. The above conditions a
necessary for the vesicle’s shape to be closed and in ord
avoid discontinuities of the membrane’s normal. The para
etersS and P are the Lagrange multipliers associated w
the area and volume constraints, respectively. The func
g(s) is a field of Lagrange multipliers enforcing the cond
tion ṙ 5cosc for everys: this allows to treatr (s) andc(s)
as independent functions in the first variation ofF* while
ensuring thatr (s) and c(s) effectively parameterize the
same shape.

The first variation ofF* can be written as

dF* 5E
0

s1
dsF S ]L

]c
2

d

ds

]L
]ċ

D dc~s!

1S ]L
]r

2
d

ds

]L
] ṙ

D dr ~s!G1dFb* , ~11a!

with

dFb* 5
]L
]ċ

~s1!dc~s1!2
]L
]ċ

~0!dc~0!1
]L
] ṙ

~s1!dr ~s1!

2
]L
] ṙ

~0!dr ~0!12p~S2W!r ~0!dr ~0!1L~s1!ds1 .

~11b!

The membrane’s equilibrium equations are obtained by
ting to zero the coefficients ofdc(s) anddr (s) in dF*

05c̈2
g sinc

kr
2

Pr cosc

2k
1

ċ cosc

r
2

sin 2c

2r 2
,

~12a!

05ġ2
1

2
kS ċ22

sin2 c

r 2 D 2S2Pr sinc. ~12b!

The constraintṙ 5cosc, which determines the Lagrang
field g(s), constitutes actually a supplementary different
equation to be fulfilled. It is worth noticing that it can b
obtained by varyingF* with respect tog(s), since

]L
]g

2
d

dsS ]L
]ġ

D 50⇔ ṙ 5cosc. ~13!

By analogy with Lagrangian mechanics,s playing the role of
time, there exists, therefore, a conserved HamiltonianH,
given by @24#

H5L2ċ
]L
]ċ

2 ṙ
]L
] ṙ

2ġ
]L
]ġ

52pr F1

2
kS ċ22

sin2 c

r 2 D 1
g

r
cosc2S2

P

2
r sincG .

~14!
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For an equilibrium solution,H does not depend ons.
The boundary equilibrium equations are obtained by s

ting to zero the variationdFb
! in Eq. ~11b!. Taking into ac-

count Eqs.~10! yieldsdc(0)50, dc(s1)52ċ(s1)ds1, and
dr (s1)52 ṙ (s1)ds1. Therefore

dFb
!5H~s1!ds112p@~S2W!r ~0!2g~0!#dr ~0!.

~15!

Sinceds1 anddr (0) are independent, we obtain

H~s1!50, ~16a!

~S2W!r ~0!5g~0!. ~16b!

SinceH(s) is a constant, Eq.~16a! implies H(0)[H50.
This yields 1

2 kċ2(0)1g(0)/r (0)2S50. Hence the above
conditions can be rewritten as

H50, ~17a!

1

2
kċ2~0!5W. ~17b!

Note that Eq.~17b! is the familiar curvature boundary con
dition for adhering membranes and thin elastic pla
@14,19#. Together with Eqs.~10!, these equations form th
boundary conditions of the problem. Note that we have fi
boundary conditions for a fourth-order system sinces1 is
also an unknown.

C. First-order corrections to the limit W infinite

In order to compute the first-order corrections to the lim
W infinite, we shall determine the shape of the contact-an
region in the case of strong adhesion. To this aim, we fi
integrate once the membrane equilibrium equations by
placing Eq.~12b! by the integral conditionH50,

c̈5
g sinc

kr
1

Pr cosc

2k
2

ċ cosc

r
1

sin~2c!

2r 2
, ~18a!

g5
r

cosc FS1
P

2
r sinc2

1

2
kS ċ22

sin2 c

r 2 D G , ~18b!

ṙ 5cosc. ~18c!

1. Shape of the contact-angle region
The equilibrium problem embodied in Eqs.~18! cannot be

solved analytically. As evidenced by the boundary condit
~17b!, the width of the contact-angle region~see Fig. 1! is of
orderAk/W; hence the condition of strong adhesion can
expressed as

e5
1

L
Ak

W
!1, ~19!

whereL5r (0) is the adhesion disk’s radius. This conditio
refines Eq.~3!. We, therefore, start with the estimates
2-4
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ċ~s!5AW

k
3O~1!, ~20a!

r ~s!5L0@11o~1!#, ~20b!

S5S0@11o~1!#, ~20c!

P5P0@11o~1!#, ~20d!

where o(1) indicates terms that tend to zero withe and
O(1) indicates terms of order unity. It follows that in E
~18b! all the terms in the brackets are equal toW3O(1)
except the last one which equalsW3O(e2). We, therefore,
neglect it, which amounts to neglecting the orthoradial pr
cipal curvature (sinc)/r; thus Eq.~18b! can be rewritten as

g~s!5
L0

cosc FS01
P0

2
L0 sinc2

1

2
kċ2G@11o~1!#.

~21!

Plugging this expression ofg(s) into Eq. ~18a! and using
Eqs.~20!, we obtain

c̈5F sinc

k cosc S 2
1

2
kċ21S01

P0L0

2
sinc D1

P0L0 cosc

2k

2
ċ cosc

L0
1

sin 2c

2L0
2 G @11o~1!#. ~22!

All the terms in this equation are equal toWk213O(1),
except the last two terms that are equal toWk213O(e) and
Wk213O(e2), respectively. Using the expressions of t
zeroth-order Lagrange multipliers~7! and ~8!, we obtain fi-
nally

c̈5S 2
1

2
ċ2 tanc1

W

k

sinc2sinu0

~11cosu0!cosc D @11o~1!#.

~23!

Neglecting theo(1) term provides us with a simplified equa
tion describing the contact-angle region in the regime
strong adhesion. This equation can easily be integrated o
by introducing the intermediate variableċ2/(2 cosc) and us-
ing the boundary condition~17b!:

ċ25
2W

k

11cos~u01c!

11cosu0
. ~24!

Its solution is

c~s!54 arctanF tanhS sA W

4k~11cosu0!
D G2u0 , ~25!

where we have shifted the arc lengths by a constant, the
detachment point still corresponding toc50. Since the ra-
diusL of the adhesion disk has disappeared, the problem
actually become two dimensional, as if the rim of t
contact-angle region were translationally invariant. This i
plies that in the present regime of strong but finite adhes
04191
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the size of the vesicle has no influence on the shape of
contact-angle region. Yet, the constraint on the reduced
ume keeps an influence since it determinesu0.

Scaling lengths tol 5Ak(11cosu0)/W, and introducing a
normalized frame (X,Y) rotated at an angleu0 with respect
to the frame (r ,z), the shape of the contact-angle regio
assumes the universal expression

X~S!52 tanhS2S, ~26a!

Y~S!52@12~coshS!21#, ~26b!

whereS5s/ l is the normalized arc length. For a given co
tact angleu0, the actual shape of the contact-angle region
obtained by putting the substrate tangent to this shape, a
angle u0 with respect to the horizontal asymptote of th
curve, and then rescaling lengths with respect tol , as shown
in Fig. 3. This shape is the same as that found in Ref.@17#,
which was established using an open membrane descrip
and by imposing the asymptotic direction of the membrane
the angleu0 through an externally imposed tension.

2. Contact-angle extrapolation length

A useful characteristic of the contact-angle region, used
RICM experiments in order to determine the ratioW/k
@18,21#, is theextrapolation lengthl1 ~see Fig. 1!. From the
above calculation, valid in the regime of strong adhesion,
deduce

l1.E
0

`

cosc ds2E
0

` sinc

tanu0
ds5A2k

W
cot

u0

2
. ~27!

This expression holds even for deflated vesicles and ag
with the expression previously obtained in Ref.@18# for
nearly spherical vesicles (p2u0!1).

3. First-order corrections to the global observables

Let us determine, in the regime of strong but finite adh
sion, the global observables characterizing the vesic
shape:u, R, L, H ~see Sec. II for their definitions!. To this
purpose, we match the contact-angle region to the rest of
vesicle. This is done by expressing the area and volume c
straints

FIG. 3. Dimensionless universal shape of the contact-angle
gion. For a given contact angleu0, the actual shape, in units ofl
5Ak(11cosu0)/W, is the part of the curve comprised between t
horizontal asymptote and the substrate, the latter being the tan
to the curve oriented at the angleu0 with respect to the asymptote
2-5
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A5Acap2dA, ~28a!

V5Vcap2dV, ~28b!

where Acap5pR2@2(12cosu)1sin2 u# is the area of the
spherical cap osculatory to the vesicle plus the area o
bounding disk,Vcap5

1
3 pR3@2(12cosu)2sin2 u cosu# is the

volume enclosed by this spherical cap, andA andV are the
actual vesicle’s area and volume, respectively.

In the regime of strong adhesion,dA can be evaluated
from the results of Sec. III C 1 by calculating the differen
between the area associated with the approximate con
angle shape given by Eq.~25! and that associated with it
asymptote

dA.2pL0E
0

`

ds22pL0S l11E
0

` sinc

sinu0
dsD

54pS cos
u0

2
2cot

u0

2 DA2k

W
L05A3O~e!, ~29!

whereL05R0 sinu0. As for dV'dA l1, it follows that it is
equal toV3O(e2) sincel15L3O(e) @see Eq.~27!#. Note
also that since in the limitW→` the vesicle’s shape is ac
tually a spherical cap, we haveA5Acap(R0 ,u0) and V
5Vcap(R0 ,u0).

Settingu5u01du and R5R01dR, we obtain the first-
order correctionsdu and dR by solving the system~28! to
first order ine. This yields

du5

2S sin
u0

2
21D ~21cosu0!

R0 sinu0
A2k

W
1O~e2!, ~30a!

dR5

2S 12sin
u0

2 D sin2 u0

~12cosu0!2
A2k

W
1O~R0e2!. ~30b!

These results show that, in order to compensate the area
dA of the contact-angle region, the vesicle’s shape flatt
(dR,0) with respect to the asymptotic case of infinite a
hesion.

We are now able to determine the first-order correction
L, the radius of the adhesion disk, and toH, the height of the
vesicle. Since the intersection between the substrate and
osculatory spherical cap, described by (R,u), is a circle of
radiusR sinu, we haveL.R sinu2l1. Using Eqs.~30! and
~27!, L can be written in the dimensionless form

L

AA
5 l 01 l 1A k

WA
1OS k

WAD , ~31a!

with

l 05
L0

AA
5A 11cosu0

p~31cosu0!
, ~31b!
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l 152A2
cos~u0/2!

11sin~u0/2!
. ~31c!

Note thatu0 is linked to the prescribed reduced volumev of
the vesicle through expression~6!. In Fig. 4 we have plotted
l 0 and l 1 as a function ofv.

As for H, since the osculatory spherical cap is tangent
the top of the vesicle, we have simplyH5R(12cosu). Us-
ing Eqs.~30! we obtain

H

AA
5h01h1A k

WA
1OS k

WAD , ~32a!

with

h05
H0

AA
5A 12cosu0

p~31cosu0!
, ~32b!

h1522A2S 12sin
u0

2 D . ~32c!

The plots ofh0 andh1 as a function ofv are shown in Fig.
5. Note thath0 and l 0 stem from simple geometrical consid
erations, whileh1 and l 1 originate from curvature elasticity
effects.

FIG. 4. Coefficientsl 0 ~solid line! and l 1 ~dashed line! of the
expansion~31a! of the radiusL of the adhesion disk, as a functio
of the reduced volumev of the vesicle.

FIG. 5. Coefficientsh0 ~solid line! andh1 ~dashed line! of the
expansion~32a! of the total height of the vesicle, as a function
the reduced volumev of the vesicle.
2-6
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4. Free energy of adhering vesicles

We now turn to the determination of the analytical dev
opment of the total free energy of the vesicle

F52pL2W1Fel , ~33!

whereFel is the curvature free energy. The latter is the s
of a contributionFel,1 arising from the contact-angle regio
and a contributionFel,2 arising from the top spherical cap
Since both the size and the curvature radius of the cont
angle region are of orderAk/W, Fel,1 is of orderLAk/W
3k(AW/k)25WL23O(e). As for Fel,2, it can be neglected
since it is of orderk3O(1)5WL23O(e2), as for a free
vesicle.

In the strong adhesion regime, the orthoradial curvat
(sinc)/r of the contact-angle region is negligible as justifi
in Sec. III C 1. Therefore, using Eq.~24!, we obtain

Fel.pkL0E
0

`

ċ2ds52pL0A2kW
12sin~u0/2!

cos~u0/2!
.

~34!

Using the expression ofL given by Eq. ~31a!, we finally
obtain

F

WA
5 f 01 f 1A k

WA
1OS k

WAD , ~35a!

with

f 052
11cosu0

31cosu0
, ~35b!

f 158Ap
12sin~u0/2!

A31cosu0

. ~35c!

The plots off 0 and f 1 in terms of the reduced volumev are
shown in Fig. 6.

As an application of this result, let us determine the fo
acting on an adhering vesicle in the presence of weak a
sion gradients: haptotaxis@22#. If the dynamical deforma-
tions during the movement are weak, the shape of the ves

FIG. 6. Coefficientsf 0 ~solid line! and f 1 ~dashed line! of the
expansion~35a! of the free energy of the vesicle, as a function
the reduced volumev of the vesicle.
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can be assimilated to its equilibrium shape on a subst
with a constant adhesion potentialW equal to the average o
W in the real adhesion disk. The force exerted on the ves
is then

f52
]F

]W
“W52F f 0A1

1

2
f 1AkA

W
1OS k

WD G“W,

~36!

where“ is the gradient on the substrate. Sincef 0 and f 1
have opposite signs, the curvature elasticity decreases
haptotactic force with respect to the infinite adhesion lim
Moreover, for a given“W the haptotactic force is not con
stant but actually increases withW.

To check the order of magnitude of the haptotactic for
let us consider a 10mm vesicle (A.1029 m2) with k
.10219 J, subject to a contact potential varying uniform
from W.1024 mJ/m2 to W.1023 mJ/m2 on a distance
.1 mm. Assuming a reduced volumev50.77 correspond-
ing to u0.p/2 @see Eq.~6!#, we obtain a force varying from
0.26 pN to 0.29 pN (8% variation!. With a simple Stokes
law, this corresponds to velocities of the order of 1mm s21.
Note that in infinite adhesion this gradient would give rise
a force equal to 0.3 pN.

IV. COMPARISON WITH THE EXACT NUMERICAL
RESULTS

We expect the asymptotic expansions given in Se
III C 3 and III C 4 to be accurate in the regime of stron
adhesion. To check their validity, we have compared th
with the exact values of the vesicle’s observables, obtai
by numerically integrating Eqs.~12! and ~13!.

In order to avoid numerical instabilities when approac
ing the axis of revolution (r 50), we have chosen to inte
grate the equations starting from the top of the vesicles
5s1, see Fig. 2!. To this aim, we impose the four initia
conditions

H~s1!50, ~37a!

r ~s1!50, ~37b!

c~s1!50, ~37c!

ċ~s1!5c0 , ~37d!

whereH(s) is the first integral of the equilibrium equation
given by Eq.~14! andc0 is an arbitrary initial curvature. The
integration proceeds backwards, starting froms5s1 ~the ac-
tual value ofs1 is arbitrary!, and is stopped whenc5p,
meaning that the substrate has been reached. To span
easily all the values of the dimensionless parameterWA/k
for a given reduced volumev, we proceed as follows. For
given fixed value of the initial curvaturec0, we vary the
Lagrange multiplierS in Eqs.~12! until the solution has the
desired reduced volume. During this search, the ot
Lagrange multiplierP, is fixed to a value~positive for
weakly adhering vesicles and negative for strongly adher
vesicles! assuring that the size of the vesicle is of order o
2-7
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in dimensionless units. Once the correct value ofS has been
obtained, we determine the area of the vesicle and its cu
ture at the pointc5p, where it touches the substrate. T
corresponding value ofWA/k is obtained through the bound
ary condition~17b!. The set of all the solutions for a fixedv
and all values ofWA/k corresponds to a trajectory in th
(S,c0) plane that has to be reconstructed by varyingc0 and
S. Sometimes, a givenc0 corresponds to two or more value
of S, which yields different values ofWA/k for the same
reduced volume.

To exemplify our results, we show in Fig. 7 the radiusL
of the adhesion disk, as a function of the reduced inve
adhesion energyk/(WA), for vesicles of reduced volumev
50.77 ~or u0.p/2) and v50.93. High adhesion energie
correspond to low values ofk/(WA), where our asymptotic
formula ~31! closely fits the exact numerical results. Th
vertical bars indicate the threshold above which the e
associated with the analytical approximation is larger th
5%. At this threshold,L differs nonetheless from its infinite

FIG. 8. White area: region of the (v,k/WA) plane where the
analytical estimate of the radiusL of the adhesion disk differs from
its exact numerical evaluate by less than 5%. Above the dashed
~not fully shown! the axisymmetric oblate shapes correspond to
unphysical self-crossing of the membrane.

FIG. 7. Numerically calculated radiusL of the adhesion disk as
a function ofk/(WA) ~solid lines! for vesicles of reduced volume
v50.77 andv50.93, along with its asymptotic expansion~31!
~dashed lines!. The vertical bars indicate the threshold at which t
relative error between the exact value ofL and its analytical esti-
mate reaches 5%.
04191
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adhesion limitL0 by more than 30%: significant deviation
from the infinite adhesion limit are, therefore, predicted w
a good precision by the asymptotic formula~31!.

For vesicles of reduced volume in the range 0.25<v
<0.95, we have determined the threshold fork/(WA) at
which the relative error between our analytical approxim
tions and the exact results reaches 5%. In Fig. 8 we sh
this threshold for the adhesion disk’s radiusL, in Fig. 9 for
the total vesicle’s heightH, and finally in Fig. 10 for the
derivativedF/dW of the free energy with respect to the a
hesion energy. The latter quantity is linked to the haptota
force ~36!.

Typically, the 5% threshold occurs for values ofk/(WA)
comprised between 1022 and 1023 ~see Figs. 8–10!. Let us
consider the case of ‘‘giant vesicles’’ since they are optica
observable~typical size.10–100 mm). Supposing an area
of .103 mm2 and a bending rigidityk.10219 J, the 5%
threshold occurs for values ofW in the weak adhesion rang
1025–1024 mJ/m2. Our analytical estimates seem, ther
fore, able to describe the adhesion of giant vesicles up to
lowest values ofW experimentally accessible. For small
vesicles, the threshold is more limitative, as it correspond
higher adhesion energiesW. Note also that in the case o
weak adhesion, the picture could be quantitatively differ
for vesicles filled with a fluid denser than the outside m
dium, because of gravity effects.

ne
n

FIG. 9. Same as Fig. 8 but for the total heightH of the vesicle.

FIG. 10. Same as Fig. 8 but for the derivativedF/dW of the free
energy of the vesicle with respect to the adhesion energyW.
2-8
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V. DISCUSSION AND POSSIBLE APPLICATIONS

Taking into account the effect of membrane elasticity
first order inAk/(WA), we have analytically determined th
global observables characterizing adhering vesicles. Our
culation is based on the fact that if adhesion prevails o
elasticity, most of the elastic contributions to the free ene
are located in the ‘‘contact-angle region.’’ We have nume
cally determined the region of validity of our analytical e
pansions, in the (v,k/WA) parameter space, correspondi
to a 5% maximum error. It turns out that for ‘‘giant vesicle
~typical radius 10–100mm), this region comprises pract
cally all the accessible adhesion surface energiesW. Besides,
our analytical estimates correctly describe significant de
tions with respect to the infinite adhesion limit.

We have throughout assumed that the areaA and volume
V of the vesicle were strictly fixed, while vesicles actua
possess small but finite stretching elasticity and osm
compressibility. It is easily shown, however, that a se
consistent choice of the Lagrange multipliersS andP yields
the same equilibrium solution in the presence of arbitr
stretching and osmotic potentials. It follows that our expr
sions ofdu, dR, L, andH remain correct provided thatA
and V are the actual area and volume~that now depend on
W).

Measurements of the contact potentialW are usually per-
formed by RICM imaging of the contact-angle regio
@18,21#. The value ofW is inferred either from the loca
curvatureċ(0) through Eq.~17b!, or from the extrapolation
length l1 through Eq.~27! ~an approximated formula valid
for p2u0!1 is actually used@18#!. The precision of the
former measurement is limited by the fact that the vesic
curvature varies abruptly close to its detachment point,
ch

,

d

o,

ys

eo

.
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exact position of which is always slightly ambiguous. T
extrapolation length measurement relies on the existence
well defined asymptote of the vesicle’s profile close to t
contact-angle region: it is, therefore, suitable only for t
strongest adhesions. The expressions ofL and H found in
Sec. III C 3 allow one to envisage different measurements
W, based onglobal characteristics of the adhering vesicle. T
this aim, one needs to know also the vesicle’s total area
volume. They can be either directly determined by imagin
side view of the vesicle@25#, or inferred by osmotically de-
flating a spherical vesicle of known radius in a controll
way. The fact thatW can be determined through two inde
pendent measurements (L and H) allows to better estimate
the experimental errors and to validate the model. Moreo
such global measurements are complementary to the ab
cited local ones, since they are more adapted for measu
weaker values ofW. The precision of the measureme
should increase asW decreases, as long as one remains
side the authorized zone of Figs. 8 and 9. In fact, forW too
strong,L andH saturate, while forW too weak the analytica
expansions ofL and H lose their validity. However, as we
have seen, the lowW limitation is not relevant for ‘‘giant
vesicles.’’

Finally, the haptotactic force~36! suggests the possibility
to determine the size of suboptical vesicles by measu
their velocity of migration on a substrate presenting a c
trolled adhesion gradient, supposing a linear viscous frict
law. Fitting the evolution of the vesicle’s velocity as a fun
tion of W allows to determine the vesicle’s area and volum
provided that the dependence of the friction coefficient
k/(WA) and v is known. The latter could be determine
using giant vesicles of known area and volume.
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